Evaluating the learnability of vowel categories from Infant-Directed Speech

Jahnavi Narkar¹, Ekaterina A. Khlystova1, Connor J. Mayer², Ann Aly³, Ji Young Kim4, Megha Sundara¹

${ }^{1}$ Department of Linguistics, UCLA; ${ }^{2}$ Department of Language Science, UC Irvine; ${ }^{3}$ Tech Flow, Cape Coral, FL, USA; 4Department of Spanish and Portuguese, UCLA

BACKGROUND

Hyper-articulation - increased distance between centroids of vowels - in infant directed speech (IDS) is thought to facilitate acquisition (e.g., Trainor \& Desjardins, 2002; Liu et al, 2005).

- But vowels in IDS are also more variable (Cristia \& Seidl, 2014; Martin et al, 2015; Ludusan et al. 2021)

ALTERNATIVE APPROACH
> Evaluate distributional overlap
> By combining category distance and variability
> Measures used extensively in socio-phonetics and machine learning (e.g., Hay, Warren \& Drager, 2006; Kelly \& Tucker, 2020)
> Independently test learnability via previously implemented Gaussian learner (Feldman et al., 2013)

- Two predictions of a facilitation account: (1) Vowels in IDS have less-overlapping distributions
(2) Extracting vowel categories from less overlapping distributions is easier

METHODS

- Four connected speech corpora analyzed

English IDS: Providence Corpus (Demuth et al. 2007; ~ 2OK tokens)

- English ADS: Buckeye Corpus (Pitt et al. 2007; $\sim 20 \mathrm{~K}$ tokens)
- Spanish IDS: adult-child dyads recorded in lab (Sundara et al. 2020; $\sim 5 \mathrm{~K}$ tokens)
- Spanish ADS: adult Spanish speakers (Kim \& Repiso-Puigdelliura 2021; $\sim 5 \mathrm{~K}$ tokens)
- Extracted F1, F2, F3 \& duration in Voicesauce (Shue et al., 2011)
- Indexing overlap between categories: (a) Pillai scores ($0=$ complete overlap; $1=$ no overlap e.g., Hay et al. 2006)
(b) KL divergence - machine learning statistic to measure the difference between 2 distributions ($0=$ complete overlap; larger number = less overlap)
Extracting vowel categories: Bayesian model of distributional learning (Feldman et al., 2013)

RESULTS

Do vowel categories in IDS have less overlap than in ADS?

Pillai scores

- Pillai scores to generate dissimilarity metric for vowel pairs in IDS and in ADS
- 2-D Multi-Dimensional Scaling (MDS) solution to visualize dissimilarity space
Spanish A0s

In both Spanish and English, some evidence that IDS vowels have less overlap
Extracting vowel categories via a Gaussian learner

- English (trained on 10,000 samples):
- Spanish (trained on 5,000 samples):
- Best performance on F1, F2 and duration
- Learns 3,4 or 5 out of 5 categories in IDS (ask us!)
- Learns 4 out of 5 categories in ADS

CONCLUSIONS

- Mixed findings in IDS
- Pillai score for the vowel system somewhat more dispersed
- Relatively more vowel pairs in IDS have greater KL divergence
- However, Bayesian distributional learner has lot of difficulty with connected speech
- Worst on English 9-vowel system, though better in ADS
- In some conditions it extracts 5 vowels, but only in Spanish IDS
- Overall, no clear evidence for facilitation in IDS

FUTURE DIRECTIONS

- Improvement needed in distributional learners to handle variation in naturalistic speech
- Perhaps IDS plays a different role in category learning
- Could the greater spread in IDS be helpful to identify relevant acoustic cues for vowel categories?

ACKNOWLEDGMENTS

This work was supported in part by NSF BCS2028034 to MS. We also thank members of the UCLA Phonetics Lab for their feedback on this work.

REFERENCES

Cristia, A. \& Seidl, A. (2014). Journal of Child Language, 41(4), 913-934 Demuth, K., Culbertson, J. \& Alter, J. (2006). Language \& Speech, 49
137-174. Pitt, M.A. Dilley, L., Johnson, K., Kiesing, S., Raymond, W Hume, E. and Fosler-Lussier, E. (2007) [www.buckeyecorpus.osus.edu]
Columbus, OH: Department of Psychology, Ohio State University Columbus, OH: Department of Psychology, Ohio State Unieversity
(Distributor). Feldman, N. H. Grifitits, Th. Goldwater S, Morgin, (Distributor). Feldman, N. H., Grifitiths, T. L., Goldwater, S., \& Morgan, J. L.
(2013). Psychological review, 120(4), 751. Kelley, M. C., \& Tucker, B. V. (2013). Psychological review, 120(4), 751 . Kelley, M. C.., \& Tucker, B. V.
(2020). The Journal of the Acoustical Society of America, 147(1), 137-145. Kim, J.-Y., \& Repiso-Puigdelliura, G. (2021). Languages. 6 (1), 13. Liu, H
M. Kuhl P. K., \& Tsao F. M. (2003). Developmental science, 6 (3), F1-F10 M., Kuhl, P. K., \& Tsao, F. M. (2003). Developmental science, 6(3), F1-F10
Ludusan, B., Mazuka, R., \& Dupoux, E. (2021). Cognitive science, 45(5), Le12946. Martin, A., Schatr, T., , versteegh, M., Miyazazawa, K., Mazuka, R, Dupoux, E., \& Cristia, A. (2015). Psychological science, 26(3), $341-347$
Shue Y.L. P. Keating C. Vicenik K. Y (2011) Voicesace A Shue, Y.-L., P. Keating, C. Vicenik, K. Yu (2011) VoiceSauce: A program
for voice analysis Proceeding of the ICPhS XVII, $1846-1849$ Sundara for voice analysis, Proceedings of the (CP) XVII, 844-1849. Sundara
M., Ward, N., Conboy, .., \& Kuhl, P. K. (2020). Bilingualism: Language and Cognition, 23(5), 988 -991. Trainor, L. J., \& Desjardins, R. N. (2002)
Psychonomic bulletin \& review, 9(2) $335-340$.

